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A direct comparison is made between the dynamics obtained by weakly nonlinear 
theory and full numerical simulations for Langmuir circulations in a density- 
stratified layer having fhite depth and infinite horizontal extent. In one limit, the 
mathematical formulation employed is analogous to that of double-diffusion 
phenonema with the flux of one diffusing quantity fixed at  the boundaries of the 
layer. These problems have multiple bifurcation points, but their amplitude 
equations have no intrinsic (nonlinear) degeneracies, in contrast to ' standard ' 
double-diffusion problems. The symmetry of the physical problem implies invariance 
with respect to translations and reflections in the horizontal direction normal to the 
applied wind stress (so-called O ( 2 )  symmetry). A multiple bifurcation at  a double- 
zero point serves as an organizing centre for dynamics over a wide range of parameter 
values. This double zero, or Takens-Bogdanov, bifurcation leads to doubly periodic 
motions manifested as modulated travelling waves. Other multiple bifurcation 
points appear as double-Hopf bifurcations. It is believed that this paper gives the 
first quantitative comparison of dynamics of double-diffusive type predicted by 
rationally derived amplitude equations and by full nonlinear partial differential 
equations. The implications for physically observable natural phenomena are 
discussed. This problem has been treated previously, but the earlier numerical 
treatment is in error, and is corrected here. When the Stokes drift gradient due to 
surface waves is not constant, the analogy with the common formulations of double- 
diffusion problems is compromised. Our bifurcation analyses are extended here to 
include the case of exponentially decaying Stokes drift gradient. 

1. Introduction 
The mechanically driven convective motions in the upper layers of the ocean and 

other natural bodies of water, known as Langmuir circulations (LC) characteristically 
take the form of rolls with axes nearly parallel to the direction of the applied wind 
stress. In the theory of Craik & Leibovich (1976) - see Leibovich (1983) for a survey 
of the phenomenon and the subsequent development of this theoretical framework 
- Langmuir circulations are mathematically analogous to other more familiar 
convective processes in certain limits. In particular, when spatial variation in the 
wind direction is neglected, the motion takes place in a layer of finite depth, and the 
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Stokes drift gradient associated with surface waves is approximated as constant, 
then direct mathematical analogies are possible. When the water has uniform 
density, the analogy is to BBnard convection, and when the water is density 
stratified, the analogy is to thermohaline (or double-diffusive) convection. When this 
analogy is invoked, not all of the boundary conditions appropriate to a buoyancy- 
driven flow are relevant to  the LC problem, but those relevant to LC are contained 
in those that may sensibly be imposed to  model buoyancy-driven flows. 

These analogies have been explored by Moroz & Leibovich (1985) and especially by 
Leibovich, Lele & Moroz (1989, hereinafter referred to as LLM), based on a model 
introduced by Leibovich (1985) for Langmuir circulations in a stratified layer 
bounded below by a strong thermocline. In  this model, the stress transmitted across 
the layer is constant, and the temperature (the only agency considered to cause 
stratification) is held fixed at  the top and bottom of the layer. This is analogous to 
a double-diffusion problem with fixed flux at the boundaries for one diffusing 
quantity, and fixed level for the second diffusing quantity. LLM present linear 
stability results, and address the nonlinear dynamics, which are shown to lead to 
various transition sequences which are decisively different depending on whether the 
sidewall boundary conditions are chosen to be periodic or flux-free. The direct 
numerical simulations done in LLM are in error? however, and these are corrected in 
Appendix A to the present paper. The new results differ quantitatively and 
qualitatively for both periodic and flux-free conditions. Given the disputed nature of 
the numerical work, we have gone to considerable pains, detailed in Appendix B, to  
verify the correctness of the numerical procedures used here. 

We also give additional results for exponentially decaying Stokes drift, a problem 
not directly analogous to double diffusion. 

Our main focus in this paper is the comparison between dynamical behaviour 
predicted by the weakly nonlinear theory and the full partial differential equations 
when periodic lateral boundary conditions are imposed. To this end, we derive 
amplitude equations that describe the nonlinear dynamics near bifurcations from the 
basic state. The physical problem posed has O ( 2 )  symmetry, that is, the problem is 
invariant with respect to arbitrary translations in the crosswind horizontal direction, 
and to reflections of this direction. Such symmetry is common, and leads to multiple 
eigenvalues in the linear stability problem ; furthermore, multiple bifurcation points 
can arise, especially when the problem has two independent control parameters. This 
is the case here, with the effect of wind and surface wave forcing represented by a 
destabilizing ' Rayleigh ' number, R,  and the buoyancy represented by a stabilizing 
Rayleigh number, S: these characterizations assume, as we do throughout, that 
attention is restricted to the first (S, R)-quadrant. 

The nonlinear dynamics depend on the specification of the horizontal spatial 
period under consideration. I n  the body of the paper, this is fixed to be twice the 
depth of the layer. The dynamical behaviour near the instability onset depends on 
S. In the case of constant Stokes-drift gradient, stability is first lost to steady states 
when S < SD x 72.01, while for S > SD stability is first lost to oscillatory convection. 

The physical consequence of the O ( 2 )  symmetry is to  allow stable travelling waves 
and stable modulated travelling waves. Both possibilities are captured by analysis in 
the vicinity of a multiple bifurcation point associated with a double-zero eigenvalue, 
the so-called Takens-Bogdanov bifurcation (see Dangelmayr & Knobloch 1987 for a 
thorough treatment of the general dynamical possibilities). This double-zero 
bifurcation serves as the organizing centre, in the sense that the dynamics near this 
point capture the dynamical behaviour of the full system even a t  points a t  some 
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distance in parameter space from the multiple bifurcation. For larger values of S, a 
sequence of other multiple bifurcation points is encountered, each of which is a 
double-Hopf bifurcation (two pairs of imaginary eigenvalues). These seem not to 
play the central role of the double zero, which still seems to organize the dynamics. 
A discussion of a double-Hopf bifurcation in this system will be presented elsewhere 
(Cox et al. 1992). 

Travelling waves and modulated travelling waves, as well as other possibilities, 
have been predicted on the basis of amplitude equations (including those for the 
Takens-Bogdanov bifurcation) and full numerical simulations of two-dimensional 
double diffusion with ‘standard ’ choices for boundary conditions (both diffusing 
substances constant on the horizontal boundaries). In these problems, which, like 
LLM, we will refer to as ‘ideal double diffusion ’ (IDD), the linearized problem can 
be solved in closed form, and the cubic terms in the amplitude equations can be 
computed analytically. The bifurcation in these cases has a (nonlinear) degeneracy 
marked by the vanishing of the coefficient in one of the cubic terms that determines 
the stability of travelling waves. As a consequence, the dynamics are not fully 
specified to third order, and matters are not settled until quintic terms are included. 
In this case, Knobloch (1985) finds that standing waves are never stable near 
bifurcation. While the range of possible qualitative dynamics allowed by the 
amplitude equations can be determined and is found to include cases computed from 
the partial differential equations (see Deane, Knobloch & Toomre 1987 and 
Knobloch, Deane & Toomre 1987, for ideal double diffusion, and Knobloch & Moore 
1990a, b for binary fluid convection), a detailed comparison of dynamics has not been 
made, to our knowledge, for any previously studied problem with O ( 2 )  symmetry 
that admits stable, self-excited, travelling waves. 

By contrast, the weakly nonlinear theory of the problem addressed here is 
determined by the cubic nonlinearities for sufficiently small amplitude. Numerical 
computation is required to compute the coefficients in the amplitude equations in 
this case. We do this, and are able to make definitive comparisons between the 
predictions of weakly nonlinear theory and full simulations. 

The problem formulation and the linearized theory are outlined in $2, followed in 
$3  by the analysis needed to derive the weakly nonlinear problem for steady 
convection, oscillatory convection (the simple Hopf bifurcation with O ( 2 )  symmetry), 
and the double-zero bifurcation in which steady and oscillatory convection patterns 
may compete. The dynamical behaviour encompassed by the amplitude equations is 
described in $4. Direct numerical simulations of the partial differential equations are 
described in $ 5  and compared to the bifurcation analyses for periodic boundary 
conditions. A brief discussion of the spatial symmetries satisfied by the various 
solutions (steady states, travelling waves, and standing waves) is given in $6, and 
conclusions are given in $7. Simulations with both flux-free and periodic boundary 
conditions are described in Appendix A, which together with $ 5  provides detailed 
corrections to the simulations given by LLM. Appendix B describes the pseudo- 
spectral code used for the numerical simulations. Appendix C describes how the 
computer algebra methods we use for the bifurcation analyses are implemented. The 
latter are based on the methods introduced by Mahalov & Leibovich (1991a, b ) .  
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2. Problem formulation and linearized stability 
2.1. Problem statement 

A horizontally infinite layer of stratified water is bounded by a free surface with 
mean location at  z = 0, and a lower bounding plane at z = -d .  The free surface 
supports water waves with time-independent, horizontally homogeneous charac- 
teristics. The water waves are associated with a Stokes drift us, and we write the 
gradient of the drift as 

where h is a dimensionless function. After averaging as in Craik & Leibovich (1976), 
and Leibovich (1977a, b ) ,  the surface waves are filtered out, and the plane at  z = 0 
serves as the upper boundary for the purposes of our analysis. The wind exerts a 
constant stress, pu", in the x-direction, and the water temperature is held constant 
at  the upper and lower boundaries of the layer. The lower boundary is thought of as 
marking a strong thermocline inhibiting vertical motions and separating the layer of 
interest from a deep body of water below. Following LLM, we assume that the stress 
transmitted to the water below is also constant in time and equal to that imparted 
to the upper surface. 

An equilibrium flow consisting of a linear shear 

and a linear temperature profile 

T(z)  = (AT/d)  z+ T(O), 

is admissible, where vT is the eddy viscosity, and AT is the difference between the 
temperature a t  the lower and upper boundaries (assumed positive here). 

We are interested in Langmuir circulations in this layer arising as perturbations to 
the equilibrium, with spatial variations in the x-direction ignored. The reader is 
referred to $2 of LLM for a discussion of the mathematical description that we shall 
adopt. The present model does not produce a finite critical wavenumber, and so we 
must decide (somewhat arbitrarily) on an aspect ratio for the motions. A more 
general mathematical model of a stratified water layer bounded below by a strong 
thermocline given in Cox & Leibovich (1992) does yield a finite horizontal lengthscale 
for the motions and thereby avoids the need for an arbitrary quantization, but this 
model will not be considered here. 

With d as scale for length, d 2 / v ,  as scale for time, vT/d as scale for the perturbation 
velocity in the crosswind (y, 2)-plane, and AU = U(0) -  U( - d )  as scale for the 
perturbation velocity component in the x-direction, the dimensionless wave-filtered 
equations of motion are 

($Vz)V2$ = Rh(z) - -S-+J($ ,V2$) ,  au ae 
ay ay 
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where u is the perturbation velocity component in the x-direction, 8 is the 
perturbation temperature, and $ is the stream function in the crossplane. Here the 
dimensionless ( y ,  z )  velocity components (w, w) are given by 

and J (f, g )  is the Jacobian 

The ‘ Rayleigh number ’ parameters, R and S, and the parameter 7 are given by 

pgATds aT 
( O ) ,  s=-, 7 =-, 

a Z  4 VT 

AUd3 au, R=-- 

where p is the coefficient of volume expansion, g the gravitational acceleration, and 
aT the eddy diffusivity of heat. 

The dimensionless Stokes drift gradient may be taken to be any appropriate 
function of depth ; here it is taken here to be a simple exponential 

h(z) = exp ( ~ A z ) ,  (4) 

which is appropriate to a monochromatic surface wave train. The analogy with two- 
dimensional thermohaline convection with Prandtl number unity holds when h = 0, 
and is then obtained by identifying R and S as the thermal and salt Rayleigh 
numbers, and 7 the ratio of salt to heat diffusivities. If 8 and Z are the temperature 
and salt perturbations, then the analogy identifies UH-8 and OH-Z. 

Since the stress and temperature at the bounding horizontal surfaces are held 
constant, the perturbations to these quantities vanish there, together with the 
normal velocity component, so 

= y = v = O  at z = O , - I .  au a2$ 

aZ az2 
- =- 

In LLM, two types of lateral boundary conditions were considered : periodic with 
period L,  appropriate when O ( 2 )  symmetry is considered, and ‘constrained’. The 
‘ constrained ’ boundary condition is periodic, but forces fluxes to vanish a t  the 
lateral boundaries, or 

We refer to such boundary conditions as ‘flux-free’. 
The LC problem may be written in abstract form as 

L Y  = N( Y, !Pj, (7) 

subject to the boundary conditions 

BY=O, (8) 

where Y = ($, u, 0)  is the perturbation to the basic state, L is the linear operator, N 
the (nonlinear) Jacobian, and B the (linear) boundary condition operator. 
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2.2.  Summary of relevant linear stability results 
Linear stability is determined by 

LY = 0. (9) 

The linear operator L may be written as 

L = a, J + K, 

where the operators J and K involve ay and a,, but not a,. The operator J is the self- 
adjoint diagonal matrix operator 

diag [V2, 1,1], 

and the operator K is the matrix operator 

Here R, is the critical value of R, given S, L, A and 7 ,  for onset of convective motion 
from the non-convective equilibrium. 

The formal construction of weakly nonlinear amplitude equations requires the 
solution of the adjoint linear problem. The linear problem (9) is not self-adjoint, since 
K is not: nevertheless, we can determine the adjoint eigenfunctions !P from the 
eigenfunctions of (9) in the important special case A = 0. The relation is 

Yt= 0 -R, 0 Y*, (1 :: 1) 
where ( )*  indicates complex conjugation. 

modes, that is, we consider disturbances of the form 
We determine the linear stability of the basic state by the method of normal 

= @(z) eiku+ut = ($ (z ) ,  ~ ( z ) ,  B (z ) )  eibg+ul, 

where k = 2 7 ~ / L ,  

and find the growth rate, v, by solving the eigenvalue problem 

{aJ(k)+ K ( k ) }  !P = 0. (11) 

Here, the operators J(k) and K(k) are obtained from J and K by replacing ag by ik. 
Thus they depend upon a,, but not upon ay or a,. The eigenvalue, ul, with the largest 
real part determines the stability of the basic state. If Re (a,) > 0 then the basic state 
is unstable. Stability is lost as the Rayleigh number increases through the critical 
value, R,; to steady convection if Im (a,) = 0, and to oscillatory convection 
otherwise, if u, = io + 0. We regard the parameters A and r as fixed, and we increase 
R for fixed S, or vary both R and S independently. 

Numerical simulation of the nonlinear problem requires a choice of the lateral 
dimensions of the computational region. LLM considered motions with fundamental 
periods of both L = 2 (i.e. k = K )  and L = 4(k = in) ; see their paper for a justification. 
Except for Appendix A, where both fundamental periods are treated, we focus 
attention on L = 2. With this fundamental, the marginal linear stability boundary 
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I 
72.01 s 

FIQURE 1.  Stability diagram for L = 2. ‘ M i  ’ indicates transition to a monotonic convective state, 
‘H1 ’ a Hopf bifurcation to oscillatory convection, for the fundamental mode with horizontal 
wavenumber A. The intersection a t  (SD,RD) = (72.01,741.6) is a double-zero (DZ) bifurcation. ‘M2’ 
indicates the monotonic bifurcation of the mode with wavenumber 2n. 

for the nonconvective state in the (S ,  R)-plane is sketched in figure 1. The boundary 
consists of a series of intersecting curves (this is seen more clearly in figure 12), each 
almost a straight line. For S < SD, stability is first lost (on linear grounds), as R 
increases, to a steady convective motion, while for S > SD, stability is first lost to 
oscillatory motion. LLM quote an approximate value for SD of 78: we have 
determined that a more accurate value is 72.01. 

3. Weakly nonlinear analysis 
Near a bifurcation point (R,,S,) we can write the solution Y as a power series in 

the small parameter E ,  where E = O(I(R, S )  - (R,, S,,)li). If a single eigenmode becomes 
unstable at  (R,,S,) then to leading order in E ,  Y is proportional to the marginal 
eigenfunction, with an amplitude that evolves according to an ‘amplitude equation ’, 
an ordinary differential equation that can be rationally derived from the full 
nonlinear system. If two or more modes simultaneously destabilize then Y is 
approximately a sum of these modes, with the amplitude of each mode evolving 
according to an amplitude equation. In this problem, there are four cases to consider. 

In the first and simplest case, a single eigenvalue of the linear operator L passes 
through zero as R is increased through R,;  this occurs when S < SD. The derivation 
of the Landau equation from the full partial differential equations in this case is 
standard. 

In  the second case, which arises when S = SD, the operator L has a double-zero 
eigenvalue a t  onset. The derivation of the (system of) Landau equations from the full 
partial differential equations is somewhat more complicated. The procedures are not 
yet standard and we give a full account. The resulting pair of complex amplitude 
equations turns out to describe the dynamics of the fully nonlinear problem over a 
wide range of parameter values. In this sense, the double-zero bifurcation point 
serves as an ‘organizing centre’ for an important range of the nonlinear dynamics. 

In the third case, a pair of complex-conjugate eigenvalues crosses the real axis as 
R increases through its critical value, thus leading to a Hopf bifurcation. Again, 
because of the O ( 2 )  symmetry, a pair of complex amplitude equations is required to 
describe this bifurcation. This third case occurs for all S > SD, except at  isolated 
points. 

These exceptional points are the intersections at which two spatial modes, each 
associated with a pair of imaginary eigenvalues, coexist on the marginal stability 
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boundary. These form the fourth case, and lead to double-Hopf bifurcations. In  the 
presence of O(2) symmetry, systems of four complex amplitude equations are 
required to complete the description of the local dynamics near these points. 

We outline the results of all four of these cases below, but give a detailed 
description of the derivation of amplitude equations only in the first two. For a full 
account of the details of the bifurcation analyses (both Hopf and double Hopf) to 
oscillatory convection see Cox et al. (1992), where both the O(2)-symmetric periodic 
problem and the 2,-symmetric flux-free problem are treated. 

3.1. A single zero eigenvalue (steady bifurcation) 
We consider first the case where crl = 0 at the bifurcation point, and expand Y as 
a power series in e, 

Linear theory tells us that the growth rate of the convection cells is 

Y = €Yl + €2Y2 + €3Y3 + . . . . 

O W  - R c , S -  S,)l ), 

(12) 

and a possible nonlinear balance is indicated when I(R-R,,S-X,)I = O(e2) .  We 
therefore take R = R, + s2R2, S = S, + c2S2, and introduce a slow timescale T = e2t for 
the evolution of the amplitude of convection. Specifically, we write 

a a  a 
-++-+€2-- 
at at aT 

Since K ( k )  depends on R and S then we must expand this operator also, 

~ ( k )  = ~ , ( k )  + € 2 ~ ~  ~ , ( k )  +a2 ~ , ( k )  + 0 ( € 4 ) ,  

where K, = aK(k) /aR and K, = aK(k)/i3S. In  a standard way, but using a computer 
algebra package to carry out the details, we solve the problems that result from 
considering the terms in the governing equations a t  successive powers in E .  The 
practical details of carrying this out numerically are described in Appendix C. 

The problem a t  O(e) is just the eigenvalue problem, 

K,(k) Y0(z) = 0 ,  (13) 

where the leading term for Y is 

Yl = A ( T )  Y0(z)eikY+c.c.; 

A(T)  is the slowly varying amplitude and C.C. in this and in subsequent expressions 
stands for the complex conjugate of the preceding term. We normalize the 
eigenfunction Yo(z) so that ll I&(d12 dz = 2'  

With this choice, when we change the boundary conditions to check our calculations 
against ideal double diffusion, we can make a direc) comparison of the coefficients of 
the nonlinear terms since for that  problem, $(z)  = sinnz, which satisfies our 
normalization. 

At O(e2) we have 
KO y2 = N(P1, P I ) .  

The right-hand side of this equation consists of terms proportional to 

A2 e2iky A*2 e-2iky and (AI2. 
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We denote these terms by R r ) ,  RLP2) and RP), respectively. To solve for the 
corresponding components of Y2 we have 

where 

Since the solution is real, W;2) = P22)*, and we need calculate only one of Vc2) and 
!KcZ+z). We assume, as is generally the case, that neither K0(2k) nor Ko(0) has a zero 
eigenvalue, that is, that there are no resonances in our choice of parameters. 

To find Y3 we need to solve 

KO y 3  = N(Y1, y2)+N(p2, yi) 

The right-hand side of this equation contains terms proportional to e*3iky and e*iky. 
The latter terms impose a secular forcing, and in order to ensure the validity of the 
expansion (12), we choose dA/dT so as to remove this secular term, ensuring that the 
right-hand side lies in the range of Ko(k). This gives us the Landau equation 
governing the evolution of A. We need consider only Yn;l), the component of Ys 
proportional to eiky, and Ril), the part of the right-hand side proportional to eiky. 

The terms in (16) proportional to eikg are 

where N(’) represents all the nonlinear terms of order e3 proportional to eiky, and is 
proportional to A(AI2. Formally, in order to find the amplitude equation for A we 
take the inner product of (17) with the linear adjoint solution, !?’+. This gives 

and so the amplitude equation 

Here, p is a linear combination of R, and S,. If a > 0 then the bifurcation to steady 
convection is subcritical, while if a < 0 the bifurcation is supercritical. In  the 
practical implementation used in our numerical work, the coefficients in (19) are 
evaluated by a method that does not require explicit calculation of inner products 
with the adjoint. This will be described in Appendix C. 

3.2.  A pair of imaginary eigenvalues (Hopf bifurcation) 
When Im (al) = iw + 0 at the bifurcation point then nearby in parameter space there 
are time-periodic solutions with period near that of linear theory, that is, I27t/wl. The 
O ( 2 )  symmetry is manifested by the fact (see Knobloch 1985) that f i o ,  o real, are 
both eigenvalues for the same wavenumber, k. There are consequently two possible 
linear modes, one corresponding to a travelling wave (TW) moving to the right 
(positive y-direction), and a second one corresponding to a TW moving to the left. 
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In  addition, any linear combination of these TW is possible on linear grounds. The 
potentially significant one of these is the standing wave (SW), which is the 
combination of the two TW having equal amplitudes. 

The linear solution, Y,, takes the form 

Y, = {A,( T )  eilcg+iwt Y ,,( z ) + A,(T) eilcy-iwt Y 12( z )>+CJ% (20) 
where Y,, = @o(z) = ($,,, Go, 6,) and Y,, = ( -  $:: G,*, 6;).  Clearly A ,  is the amplitude 
of the left-TW, and A ,  and the amplitude of the right-TW. 

The amplitude equations for A ,  and A ,  are 

There are four possible steady states, which correspond to the rest state, to left- and 
right-TW, and to an SWT. 

The stability of these four states is easily analysed. One finds (see Knobloch 1985) 
that TW and SW are unstable unless both bifurcate supercritically (so a, < 0 and 
a,+P, < 0, where the subscript r denotes the real part). I n  that case, the one with 
the larger amplitude is stable and the other is unstable. 

3.3. A pair of zero eigenvalues (Takens-Bogdanov bifurcation) 
Our linear stability analysis indicates that at the codimension point 

(R ,S)  = (RD,SD) x (741.64,72.01) 

the linear operator L has a pair of zero eigenvalues for modes with wavenumber 
k = 7c. This is the so-called O(2)-symmetric Takens-Bogdanov bifurcation, in the 
neighbourhood of which several dynamical scenarios are possible (Knobloch 1986 ; 
Dangelmayr & Knobloch 1986, 1987). New types of solutions are possible near the 
coalescence of the steady and Hopf bifurcations, which are not predicted by an 
investigation of each of the simpler bifurcations independently. For example, two- 
frequency motions, representing modulated travelling waves, are possible. 

At the codimension-two point, L has a deficient zero-eigenspace: there is one 
genuine eigenfunction, and one generalized eigenfunction. A linear analysis indicates 
that disturbances proportional to the zero eigenmode grow like t ,  while disturbances 
proportional to the generalized eigenmode neither grow nor decay. A consequence of 
this secular growth of the linearized disturbances is that we must abandon the 
straightforward two-timescale expansion that we have previously used near the 
single steady and Hopf bifurcations. A modified two-time procedure can be used, but 
we prefer to proceed by expanding quantities in powers of the amplitudes of the 
genuine and the generalized zero-eigenmodes (as in, for example, Rubenfeld 1978, 
who discusses the process for ordinary differential equations), but we make no 
assumption about the timescales of the motion. We write 

Y 3 ($,u,O) = {A,(t) @l(z)eilcy+A,(t) Y,(z )e iky}+c .c .+O(I(A, ,A, )I2) ,  (23) 
where (R,S)-(RD,SD) = O(l(A1,A2)12). The evolution of the amplitudes may be 
described by the normal form 

1 (24) 
dA,/dt = A, ,  

dA,/dt = ~ ~ , + v A , + [ a l A , ~ 2 + b l A , ~ 2 + c ( A , A ~ + A ~ A , ) ] A ,  +dlA,I2A,.J 

Here, ,u and v are linear combinations of R-RD and S-SD, and so are of order 
l(Al,A2)12. The coefficients in these equations are real, but the amplitudes are in 
general complex. 
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In  order to calculate the coefficients in (24) we first expand Y in powers of the 
amplitudes A , , A , ,  so that Y = F1)+ F2)+. .., where Fn) = O(I(A,,A,)ln) as 
!(A, ,  A,)[  + 0. Then we replace the operator a/at by the operator 

A,  a/aA, +A,a/aA,,  

where A,  and A,  are given by (24). Finally we solve the equations that arise a t  
successive powers of the amplitudes in the governing equations. As for the previous 
analysis of the steady and Hopf bifurcations, in practice we represent functions of z 
by truncated sums of Chebyshev polynomials, thereby transforming the ordinary 
differential problems into algebraic ones, and functions of z into vectors of 
coefficients of Chebyshev polynomials, as described in Appendix C. 

At leading order, the following equations must be solved for Y,(z) and Y&) : 
at O(A,) : 

at O(A,) : 
KO(4 @A4 = 0, ‘I 

J(k)  Y1+ K,(k) !P,(z) = 0. J 
Evidently, Yl(z) is an eigenfunction of the operator J-’(k) K,(k) corresponding to  a 
zero eigenvalue, and Y,(z) is a generalized eigenfunction of J-l(k) K,(k). 

At O(IA,,A,)12), Fz) is of the form 

F2) = A: !P3 eZilcy + [AT2 e-2ikg] + IA,12 Y4 + A, A, Y5 eZikY + [AT A,* e-pilcy] 

+A:A,  Y,+A,A: !@+At !P,e2ik~+[A~2 !@e-2iky]+IA212 !P8, (26) 

where we do not need to account explicitly for the terms in square brackets because 
they do not contribute to the coefficients in the evolution equations for A ,  and A ,  to 
the order we will consider. The components Yt(z) may be found sequentially from the 
linear inhomogeneous equations that arise at appropriate powers in the amplitude 
expansion of the governing equation. 

A practical consequence of the coupling of A ,  and A ,  is that the operator a/at no 
longer splits into a constant frequency of oscillation plus a much slower modulation, 
but now contains a non-trivial contribution of 0(1), A,a/aA,. At each order in 
I(A,,A,)l, therefore, we are not free to solve for the terms proportional to 
A?A$ ATi3A:i4 in any order as we are for the single bifurcations. At O(IA,, A,)lm), say, 
we must first compute the terms with i, + i, = m, then the terms with i, + i, = m - 1, 
and so on. This is exemplified a t  first order by our having to solve first the equation 
a t  O(A,),  then that a t  O(A,) in (25). At second order, we must solve first for !P3 and 
!P4. These components satisfy the following equations : 

K0(2k) !P3 = N(Ai), (27) 

KO@) 9 4  = N(lA,I2), (28) 

where N(&)e2’”Y denotes the term proportional to A;eziky that arises from 
substituting the amplitude expansion for Yinto N(Y,  Y), and so on. Since in general 
there are no low-order resonances (so that the operators K0(2k) and K,(O) are 
invertible) then we can find !P,(z) and Y4(z) uniquely. To this order in the calculation, 
a/a t  = A, a/aA,, and so the equations for the remaining second-order unknowns are 

2J(2k) !P3+ KO(%) !P5 = N(A,A,), 

J(0) !P4 + Ko(0) $6 = N(ATA,),  

J(2k) !P5+ KO(2k) !P, = N ( A i ) ,  

J(O)(!P,+ !@)+K,(O) !P8 = N(lA2I2). 
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Each of these may be solved in turn for Y5,6 , , ,8 (z) ,  because the operators K,(O) and 
K,(2k) are invertible. 

At third order we obtain the coefficients in (24) from solvability conditions when 
we consider linear inhomogeneous equations whose left-hand sides involve the 
operators J ( k )  and K,(k). Considering only those terms proportional to eiku, 

jyC3) = eiky{(R, @f)+S2 %))A,+ (R, e ) + S 2  @~))A,+AllAl12 Y,, 
+A,IA,I ,  Y12 +A,*A: Y13 + A , I A , ~ ~  Y l 4 + ~ ; ~ :  Y15 + A , I A , ~ ~  Y16}, (33) 

where (R,,S,)  = ( R - R D , S - S D ) .  Then a t  O(IA,,A,)I3), the time derivative of the 
component of Y proportional to eiku is 

+(R, @y'+S, !Pp)A2+2A,IA,(2 Yll+A:A,* Yl1 
+ A : A ~  ~ I ~ + A I I A ~ ~ ~  (Y12+2@13) + A , I A , ~ ~  ( Y 1 4 +  Y15)>. (34) 

Now we substitute these expansions into the governing equation, and consider 
successively the terms a t  O(I(Al, A,)I3) proportional to eiky. 

We find from the component proportional to (R,, S,) A ,  that  

K,(k) (R, %R) +S, w)) = - (R, K, +S, K,) Yl - yJ (k )  Y,. (35) 
Since K,(k) is singular then we must ensure that the right-hand side of this equation 
lies in the range of KO@). We achieve this by choosing y to satisfy a solvability 
condition. To compute the appropriate value for y we take the inner product of (35) 
with e, the adjoint eigenfunction. This yields 

y = -<*, J-'(k)(R, K,+S, K,) @,>/<*, 
where as before ( ) denotes the inner product. Once y is chosen in this way we 
calculate @f)(z) and @/)(z)  to within a multiple of the zero eigenmode @,(z). 

The component proportional to (R,, S,) A ,  gives 

Ko(k)(R,*)+Sz @)) =-(R,KR+S2Ks) Y 2  
-J(k) (R,  w ) + S , ! @ ) ) - v J ( k )  Y,. 

The solvability condition is now that 

v = - (e, J - l ( k )  (R, KR +S, K,) Y, + (R, !@) + S ,  @)))/( *, Y,). 
The value of v that  we obtain is independent of the component of Y1 in and !@) 
because (!&, Y,) = - (e, J - l ( k )  K,(k) Y,) = 0. For the purposes of computing the 
coefficients in (24) there is no need t o  calculate @:) or q:). 

Now we proceed to calculate the coefficients of the nonlinear terms in (24). The 
terms of order A,IA,I2 satisfy 

(36) 

We find that a is given uniquely by a solvability condition, but Yll is determined 
only up to  a multiple of the complementary function, so that Yll = Wll+all @,, 
where (e, Yll) = 0, and we are free to choose the constant all as we wish. 

aJ(k) Yl,+ K,(k) Y,, = N(A1(AJ2).  

Similarly, from 
J(k)(d@1,+2@1,)+ KO@) *12 = N(A,IAll2) (37) 
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A Coefficients 

RD = 741.64, 
p = 0.0407(R-RD)-0.1596(S--SD) 
v = 0.0127(R-RD)-0.0115(9-SD) 

SD = 72.01 

a = 44.59, b = 5.827, c = - 19.59, d = -0.747 

RD = 1825.35, 
f i  = 0.0400(R--RD)-0.1564(S-SD) 
v = 0.0125(R-RD)-0.0115(S-SD) 

SD = 74.03 

i 
li 
1 

. i  

a = 45.02, b = 7.431, c = -20.77, d = - 1.213 

RD = 3747.63, 
p = 0.0384(R-RD)-0.1491(S-SD) 
v = 0.0121(R-RD) -0.0116(S-SD) 

SD = 79.22 

a = 45.70, b = 6.356, ,c = -23.83, d = -2.354 

RD = 10678.68, 
p = 0.0351(R - R D )  - 0.1336(S-SD) 
v = 0.0112(R-RD) -0.01 17(S-SD) 

SD = 92.62 

a = 45.38, b = 20.28, c = -31.15, d = -4.904 

parameter, A 
TABLE 1.  Coefficients of the normal form (24) for various values of the Stokes-drift 

we may find d uniquely. Then Y12 = Y12+2a11 Y,+a,, Y1, where we specify that (e, Yl,) = 0, and a,, is a constant at  our disposal. 
The constant c is determined uniquely from 

J ( k )  (c@,,+ Yll)+ K,(k) Y13 = N(A:AI), (38) 

and Y13 = Y13 +all Y, + a13 Y,. 
Finally we compute the coefficient b from 

Now, however, b depends on ull .  We choose all = 0 for definiteness, and we note that 
the uniqueness of the constants a,  c and d is a consequence of the ‘minimal’ normal 
form (24) that was chosen. The ambiguity in b (that is, its dependence on the exact 
definition of the amplitudes A ,  and A ,  through all) is reflected in Dangelmayr & 
Knobloch’s analysis, where b does not figure in a significant way. 

This is as far as we need to go in order to compute‘ the coefficients in the amplitude 
equations. We find when we try to solve for Y15 and Y16 that a,, and a14 + u16 must 
be chosen appropriately to satisfy solvability conditions. There remain three 
independent constants a t  our disposal in determining the cubic-order functions 
proportional to eiky, and these constants are fixed by our definitions of the 
amplitudes A ,  and A,. 

We find, using Mathematica, that the coefficients in (24) are as given in table 1. 

4. Predictions from normal forms with O(2) symmetry 
4.1. Predictions for steady and oscillatory bifurcations 

The first bifurcation of the basic state as R is increased is to steady convection when 
S < SD x 72.01, and to oscillatory convection, in a Hopf bifurcation, when S > SD. 
The bifurcation to steady convection is supercritical when S < S* x 13.8, and 
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s Rc Nu- 1 

0 458.79 0.0424&-0.167S2 
8 490.26 0. 102R, - 0.3985, 

13.2 510.71 1.003RZ - 3.9469, 
13.79 513.03 - 10O.2R2+394.1S, 
14 513.85 -2.716R2+ 10.688, 
20 537.44 0.0945R2 +0.371S2 

TABLE 2. Kusselt number near the steady bifurcation of the basic state predicted by weakly 
nonlinear analysis. The graph of Nusselt number against R-R,. (for fixed S) becomes very steep 
(and indeed vertical) at the changeover between supercritical and subcritical bifurcation. 

S RH Nu-1 Phase speed, c 

120 783.90 0.O986Rz -0.08685, 0.7672-0.0442R2 +0.0469S2 
150 810.27 0.0783R2 -0.06885, 0.9787 -0.0342R2+0.0363S, 
200 854.17 0.0580R2 -O.O509S, 1.255 -0.0260R2 +0.02783, 
450 1072.54 0.0247R2 -0.02155, 2.167 -0.0138R2 +0.0149S2 

3000 3191.63 0.002 55R2 - 0.002 02S, 6.303 -0.00364R2 +0.00406S2 

TABLE 3. Weakly nonlinear prediction of the Kusselt number and phase speed, c,  for the travelling 
wave branch close to the Hopf bifurcation at R = RH, for various values of the stratification 
parameter, S. This branch exists only when there are periodic lateral boundary conditions (in which 
case it is stable). 

subcritical when S > S*. At the Hopf bifurcation, both TW and SW bifurcate 
supercritically, with the TW of larger amplitude, and stable. The SW are unstable. 

From our weakly nonlinear analysis we may compute various quantities of 
interest, for example the Nusselt number (Nu), a dimensionless measure of the heat 
flux through the upper surface of the fluid layer. With an angle bracket denoting a 
y-average, 

Nu-1 = ( g ( y , o , t ) )  

We show in $ 5  how the results of the analysis compare with our direct numerical 
integrations of the PDEs. 

In table 2 we show the Nusselt number predictions near the bifurcation to steady 
convection, for a variety of values of the stratification parameter, S. In each case, 
Nu - 1 is proportional to the distance in parameter space from the steady bifurcation 
point, R = R,. In  fact our numerical integrations are for fixed values of S ,  and with 
increasing €2, so that the predictions for our simulations result from setting S,  = 0. 
For completeness, though, we have given results that allow a more general 
displacement from the bifurcation point in parameter space. That the bifurcation is 
supercritical for S < S* x 13.8 and subcritical for S > S* can be seen in the values 
of the Nusselt number, as the curve of Nu- 1 against R - R ,  (for fixed S )  becomes 
vertical a t  the changeover. 

Tables 3 and 4 show some predictions of the weakly nonlinear theory for the 
oscillatory bifurcation of the basic state that occurs for S > SD. The Nusselt number 
for the TW convection and its phase speed are indicated in table 3, and the Nusselt 
number and frequency of the SW are indicated in table 4. We recall that the TW is 
stable with lateral boundary conditions, and the SW is stable only for flux-free 



Nonlinear dynamics in Langmuir circulations 683 

I I  I I I I *  

RH RMW Rho"" R R RS 
R 

FIGURE 2. Bifurcation diagram predicted by the weakly nonlinear analysis of the Takens-Bogdanov 
bifurcation with O(2)  symmetry, for values of the Stokes-drift parameter h = 0,1,2,4, and 
presumably for intermediate values also. The stratification parameter S is a little above SD, and R 
increases to the right. The diagram is selected from the classification of Dangelmayr & Knobloch 
(1987). Note that here the modulated wave (MW) is indicated by a representative average Pu'usselt 
number over its cycle, whereas later in our numerical results we plot instead the maximum and 
minimum values achieved by the Pu'usselt number over the MW cycle. The various values of R 
indicate the Hopf bifurcation (RH) of the basic state, the steady bifurcation (Rs),  the birth and 
death of the modulated waves (RMW and R""", respectively) and the terminations of the TW and 
SW branches (R' and R ,  respectively). 

S NU- 1 Frequency, w 

120 2.4 10 - 0.01 74R2 + 0.0404S2 
150 3.075 -0.0139R2 +0.0319S2 
200 (0.00566R,-Oo.00496S,)(l + 1.013sin2wt) 3.942 -0.01 10R,+0.0251SZ 
450 (0.00426R2-0.00370S,)( 1 + 1.035sin 2wt) 6.807 -0.00660R2+0.0149S, 

(0.00641R2-0.005645,)( 1 + 1.005sin 2 4  
(0.006 10R2-0.005365,) (1 + 1.008 sin 2wt) 

3000 (0.001 09R, -0.000 8678,) (1 + 1.0824 sin 2wt)  19.80-0.00259R,+0.00575S2 
TABLE 4. Weakly nonlinear prediction of the Nusselt number and frequency, w ,  for the standing 
wave branch close to the Hopf bifurcation, for various values of the stratification parameter, S. 
This branch is stable only when flux-free lateral boundary conditions are imposed. The values of 
R a t  which the Hopf bifurcation occurs are given in table 3. 

lateral boundaries. Note that Nu-1 < 0 for part of the SW cycle, consistent with 
direct numerical integrations of the partial differential equations close to the 
bifurcation point. This phenomenon is explored in detail by Cox et al. (1992). 

4.2. Predictions from the double-zero normal form 

Dangelmayr & Knobloch (1987) describe all possible bifurcation diagrams that can 
result from the normal form (24) as the unfolding parameters p and u are varied. 
There are many cases, according to the coefficients of the nonlinear terms. The values 
we have computed for various A,  which are displayed in table 1, indicate that for 
A = 0 ,1 ,2 ,4  (and presumably for intermediate values also) the relevant case is 
'11- (A > 0) ' (Dangelmayr & Knobloch 1987). We reproduce the appropriate 
bifurcation diagram in figure 2. In terms of our parameters R and S, the implications 
of this diagram are as follows. 

For each A there is a critical value of the stratification parameter, SD(A), such that 
for S < SD(A) the basic state becomes unstable to steady convection in a subcritical 
bifurcation, as R is increased (Arrow A in figure 3 shows this bifurcation). (This fact 
is consistent with our analyses of the steady and Hopf bifurcations individually. 
Note that the double-zero analysis does not predict the supercritical steady 
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S" 
S 

FIGURE 3. The bifurcation of the basic state for S < SD as R is increased is indicated by arrow 
A:  there is a subcritical steady bifurcation. Arrow B indicates the more complicated sequence 
of bifurcations when S > SD, as shown in figure 2. As this arrow cuts the various lines 
indicated, the corresponding bifurcations shown in figure 2 occur. 

convection that we find for small S - these values of S are too far from the double- 
zero point for that analysis to be relevant.) For S > SD(h)  the basic state loses 
stability to oscillatory convection. As we already know from the analysis of this Hopf 
bifurcation, and is predicted also by the double-zero analysis, both TW and SW 
bifurcate supercritically, but with only the TW stable (see figure 2). As R is increased 
through RMW the TW undergoes a Hopf-bifurcation a t  which it becomes unstable, 
and a stable branch of modulated waves (MW) arises. These MW exist over a finite 
interval in R (and exist arbitrarily close to the double-zero point), and cease to exist 
when they become homoclinic to the TW branch, when R = Rho"(& S ) ,  say. For 
R > Rhom, no stable states are predicted by this analysis. In  practice we expect quintic 
terms in the normal form to stabilize the steady states (SS) in a turning point, so that 
there are stable large-amplitude SS that will be found for R > Rho". Arrow B in figure 
3 shows the sequence of bifurcations in parameter space. 

In  fact, for a qualitative description of the dynamics we did not need to compute 
the coefficients in (24) because the only region of Dangelmayr &, Knobloch's (1987) 
parameter space consistent with the information we have about the individual 
steady and Hopf bifurcations is ' I I -  (A  > 0) '. We can, however, use these coefficients 
to make quantitative predictions from the amplitude equations, in particular about 
the existence of modulated waves. Dangelmayr & Knobloch show that MW can be 
expected between two half-lines in parameter space which they call SL, and L,, 
where 

2dmp 
3m-5d' SL,:au = ~ . p-=oo, 

and m = 2c+d. In the present problem, in (R,,S,)-parameter space, these half-lines 
turn out to be 

SL,:R, = 1.125,; R, ,S ,  > O,\ 

R,, S ,  > 0, J (42 )  L,  : R, = 1 .O8S,; 

so they form a wedge of angle approximately lo. Thus the range of parameters near 
the Takens-Bogdanov point where MW exist (and are stable) is tiny. As we move 
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further in parameter space from the double-zero point we expect the multiple 
bifurcation analysis to become less relevant, and the analysis of the separate 
bifurcations to  steady and oscillatory convection to  become correspondingly more 
relevant (for example, predicting supercritical steady bifurcation for small 8). 

5. Solution symmetries 
In  this section we list some of the symmetries exhibited by the SS, TW and SW 

states that  we compute. We describe the symmetries that we expect from the weakly 
nonlinear calculations, and say whether the numerically computed states, to be 
described further in the next section, in fact exhibit these symmetries. 

We note here that LLM found some TW states that were reported to have no 
stagger in the position of their cell centres. We find these to be ‘impossibly 
symmetric ’ because when TW bifurcate from the basic state they demonstrably have 
staggered cell centres. Indeed, this observation was the motivation for the present 
section. (By ‘cell centre’ we mean, as appropriate, the maximum or minimum of the 
stream functioii in the cell.) 

5.1. Steady states 
The eigenfunctions of the linear problem take the form 

$ = $(z )  sin ky ,  u = Zi(z) cos ky ,  8 = 6 ( z )  cos ky ,  

where the y origin is suitably chosen, and $, Zi, are even functions of z+g. A weakly 
nonlinear expansion of the steady states near their bifurcation from the basic state 
yields solutions with the following symmetries : 

(i) reflection in a cell wall: Y H - Y ,  $H-$, U H U ,  0-8 ;  
(ii) ‘flip symmetry’: y H y + x / k ,  z ~ - - l - - z ,  $I-+-$, UH-u ,  O H - - 8 ;  

(iii) point symmetry about centre of cell: y H x / k - y ,  z ~ - - l - z ,  $H$, U H - u ,  

Provided the linear eigenfunction does not represent cells stacked vertically (this is 
true for the steady bifurcations we analyse in this paper), and provided the cells have 
just one centre, then the point symmetry 3 requires that the cell centre lies on the 
midline z = -:. For ‘staggered’ cell centres (which lie alternately above and below 
the midline), the point symmetry must be broken. 

In  all of the stable steady states we have computed numerically the three 
symmetries have been present. In  particular, the cell walls are always vertical and 
the cell centres lie on z = -+. 

eH-e.  

5.2. Travelling waves 
The travelling wave eigenfunctiqn takes the for? $ = $%(z) sin (ky-wt_$,(z)) ,  
u = Zi&) cos (ky-wt-Zi,(z)), 8 = e,(z) cos (ky-yt-8&)) ,  where $/a,p, Zia,,, Ba,,, are 
even functions of z++. I n  general the phases of eP, Zip, eP, are all different, and so the 
eigenfunction has the following symmetries : 

1. 

(i) translation by half wavelength : y H y + x / k ,  $ H - $, u H - u, 8 H - 8 ; 
(ii) reflection about midline : z H - 1 - z ,  $ H $, u H u, 8 H 8. 

The weakly nonlinear travelling waves preserve these symmetries only in the 
com bination 

(iii) ‘flip symmetry’: y * y + x / k ,  z ~ - l - z ,  $I+-+, U H - u ,  O H - @ .  
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In particular the weakly nonlinear travelling wave does not have vertical cell walls, 
and its cell centres are staggered. 

In our numerical simulations of the full PDEs we find no travelling waves for 
which this ‘flip symmetry’ is broken. (In contrast with LLM, we do not find the two 
distinct types of travelling wave, TW1 and TW2, for large values of the stratification 
parameter, S, nor do we find any ‘two-centred’ TW cells.) 

5.3. Standing waves 
The linear standing waves are of the form 

$ = $,(z) sin (wt + & x ) )  sin ky ,  u = 2;,(z) sin (wt+ d U ( z ) )  cos ky ,  

0 = 8,(z) sin (wt + & z ) )  cos ky ,  

where each amplitude (a) and phase (6) is an even function of z+i. The weakly 
nonlinear standing waves exhibit the following spatial symmetries : 

(i) reflection in a cell wall: Y H - Y ,  $H-$, U H U ,  0 ~ 0 ;  
(ii) ‘flip symmetry’: y++y+n/k ,  z ~ - l - - z ,  $I+-$, U H - u ,  OH-@; 

(iii) point symmetry about centre of cell : y H n / k  - y ,  z H - 1 - z, $ H $, u H - u, 
eH-e. 

Also there is the temporal/spatial symmetry 

(iv) advancing time by one half-period, and reflection about midline: 

The phase functions 6, result in the splitting of each convection cell into vertically 
stacked cells during a small fraction of the SW cycle at which the convective energy 
is smallest (see Cox et al. 1992). 

t H t + q W ,  zH-i--z,  +-$, uH-u,  e H - e ;  

6. Simulation 
6.1. Quantitative comparison between PDE’s and weakly nonlinear theory 

We find good agreement between our weakly nonlinear results and our numerical 
results, as we summarize below. 

At S = 0, our weakly nonlinear analysis predicts a supercritical bifurcation to 
steady convection, with 

NU- 1 = 0.04237(R-R,)+O((R-R,)2), 

where R, x 458.790. A least-squares fit of the Nusselt number calculated for the 
PDEs a t  R = 463.8, 465, and 480 gives 

Nu- 1 = 0.0422(R-R,) -O.OOOS(R -R,)2 +O.OOOOl(R -R,)3,  

which is in excellent quantitative agreement with the weakly nonlinear prediction. 
As table 5 shows, however, the values of Nu- 1 rapidly diverge as one moves away 
from the bifurcation point. 

At S = 350, where the Hopf bifurcation is at R, = 985.42, the weakly nonlinear 
analysis predicts for TW, 

NU-1 = 0.03220(R-R,)+O((R-R,)2).  
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R w.n. prediction PDE integration 

463.8 0.2123 0.1928 
465 0.2632 0.2340 
480 0.8987 0.6388 
520 2.5935 1.2518 

TABLE 5. Nusselt numbers close to the bifurcation of the SS for S = 0. The weakly nonlinear 
prediction (w .n.) tends to overestimate the Nusselt number computed by direct numerical 
integration of the PDEs. The critical value of R is R, 458.79. 

NU-1 

R w.n. prediction PDE integration 

987 0.0509 0.0510 
990 0.1475 0.1242 

1OOO 0.4695 0.3149 
TABLE 6. Nusselt numbers close to the bifurcation of the TW for S = 350. The weakly nonlinear 
theory tends to overestimate the Nusselt number computed directly from the PDEs. The critical 
value of R is R, x 985.42. 

A fit of the data from the PDE integrations a t  R = 987 and 990 gives 

NU- 1 = 0.0350(R-R,)-0.001 73(R-R,)2,  

which is in reasonable agreement. Table 6 shows the details of our comparison. 
We observe that the criticality must be quite small, (R-R,)/R, - 0.01, to get a 

good quantitative fit between the weakly nonlinear analysis and the direct numerical 
integrations of the PDEs. On the other hand, it will be seen that the qualitative 
predictions of the analysis are indeed in accord with numerical simulation over a 
substantial portion of the parameter range explored here. 

6.2. Integration in a jinite box 
We note here that because we quantize the wavenumber k by integrating over a finite 
interval in y we ignore a continuum of unstable modes in our integrations. When we 
fix L = 2 so that the fundamental wavenumber is k = n, we ignore all the modes with 
k < n, which are unstable. The existence of these unstable modes is a consequence of 
the zero critical wavenumber, and the infinite horizontal extent of motions at onset, 
which in turn is a consequence of our modelling of the upper and lower boundaries 
of the fluid layer as stress-free. If a more involved modelling of these boundaries is 
undertaken, which incorporates the reduction in the applied wind stress when the 
differential in the speed of the wind and the surface water decreases, then there is a 
finite critical wavelength, and the problem of arbitrarily choosing a horizontal 
lengthscale is obviated (Cox & Leibovich 1992). 

6.3. Numerical integrations 
When S = 0 we find a branch of steady states that arises from the supercritical steady 
bifurcation at  R, x 458.79. We have computed this branch for R, < R < 2000 -the 
SS are apparently the only stable states for the unstratified problem over this range 
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FIQURE 4. Nusselt number as a function of R for S = 0, from direct numerical simulation of the 
governing PDEs. This SS branch is the only branch of solutions we find. 

of R. Figure 4 shows the plot of Nusselt number against R. We observe that these SS 
retain vertical flux-free cell walls at which $ = $'yy = uy = 8, = 0, and so they also 
solve the flux-free problem. 

For S = 80 (a value greater than SD, so the first bifurcation of the basic state is to 
oscillatory convection, at R, x 748.69) we find only large-amplitude SS for a variety 
of initial conditions and a range of R, including values subcritical to the steady 
bifurcation at R, x 772.63. We estimate that the turning point of the SS branch 
occurs at R x 690. We infer the existence of an unstable branch of SS linking the 
turning point to the steady bifurcation point. We infer also that the TW and MW 
branches of figure 2 could in principle be computed, but that they have such a small 
region of stability that we have been unable to find appropriate initial conditions for 
the numerical simulations to evolve to these oscillatory states. Figure 5 shows the 
plot of Nusselt number against R. 

For S = 120 the subcritical branch of SS does not mask the oscillatory solutions. 
We find stable TW that bifurcate supercritically from the basic state in the Hopf 
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FIGURE 6. Nusselt number as a function of R for S = 120, from direct numerical simulation of the 
governing PDEs. Marked are the branches of steady states, travelling waves and modulated 
travelling waves. The MW branch is indicated by two curves, one denoting the maximum value of 
the Nusselt number achieved over one cycle, and the other denoting the minimum. 

bifurcation at  R, x 783.90 and also, for a small range of R, Mw that bifurcate from 
the TW in secondary Hopf bifurcation at  R x 792, and cease to exist when 
R x 794.04. Figure 6 shows the three branches of solutions - note that the MW branch 
is indicated by two curves, one each for the maximum and minimum value of Nu - 1 
over the cycle. We may compare the region of existence of the MW with the 
prediction based on the weakly nonlinear analysis : since S = 120, then S-SD x 48, 
and the MW are born when R-RD x 50.4((R-RD)/(S-SD) x 1.05) and they die 
when R-RD x 52.4((R-RD)/(8-SD) x 1.11).  This is in good agreement with the 
prediction (42), considering that this example is far from criticality. The large- 
amplitude branch of SS appears to be the only stable state for R > 794.04. It can be 
continued back to Rx773.8 ,  a value subcritical to both the Hopf and steady 
bifurcations of the basic state. For S = 150 the bifurcation diagram is similar, but the 
oscillations of the MW reach larger amplitude before the MW branch disappears. The 
MW again exist over a very small range in R, but a larger range than for S = 120. 
The way in which the MW cease to exist is not clear from our integrations at  either 
S = 120 or S = 150. The turning point, or 'knee', in the SS branch where this 
solution becomes stable occurs for larger R as S is increased, that is, it moves to the 
right in the bifurcation diagrams. 

When S =  200 (figure 7)  we again find a stable TW branch born from a 
supercritical Hopf bifurcation of the basic state, at  R, x 854.17. This TW branch 
loses stability in a secondary Hopf bifurcation to MW, when R x 908. The MW do 
not terminate in a homoclinic bifurcation to the TW branch as predicted by the 
Takens-Bogdanov normal form, but seem to become heteroclinic to the SS and the 
SW solutions. (The branch of steady states has moved further to the right; for 
example the turning point is a t  R z 917.5.) In order to describe the MW near this 
heteroclinic bifurcation, we find it convenient to picture the MW solution as evolving 
with time in phase space. Because it has two frequencies, the MW traces out a 
trajectory on a torus as it evolves. The behaviour of this trajectory near the global 
bifurcation is as follows. It begins close to a SS solution, which is reflectionally 
symmetric (that is, it lies in the 2,-invariant subspace). This SS is, however, unstable 
to 2,-symmetric SW perturbations and so the trajectory leaves the neighbourhood 
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7. Nusselt number as a function of R for S = 200, from direct numerical simulation of 

FIGURE 8. Riusselt number plotted against time, t ,  for the MW solution near its heteroclinic 
bifurcation with the unstable SS and SW solutions. The unstable SS has Nu- 1 x 1.76, which we 
identify with the long quasi-steady portion of the Nusselt-number time trace. 

of the SS and approaches a SW solution. This SW has the same phase as the SS, that 
is, the cell boundaries of the rolls in the SW are at the same y location as for the SS 
solution. The MW does not approach the SW indefinitely, because it does not lie 
exactly in the 2,-invariant subspace. In  the neighbourhood of the SW the MW 
experiences an exponential growth of TW perturbations, which break the 2,- 
symmetry. The TW are of considerably larger amplitude than the SW, but are 
unstable and so the trajectory proceeds again into a neighbourhood of an SS solution. 
The phase of this new SS is not in general the same as during the previous passage 
of the trajectory near the SS because the TW episode shifts the phase. (So in fact for 
the periodic problem when we talk of the SS branch, we mean that there is a circle 
of SS, with all possible phases. Similarly there is a circle of SW, each with different 
phase.) This phase shift is the same on each passage of the trajectory around the MW 
torus, although we have not attempted to demonstrate this last fact from our 
numerical solutions. Figure 8 shows the time trace of Nu- 1 for the MW near its 
heteroclinic bifurcation. The long quasi-constant segment and the oscillations 
represent the MW’s sojourn near the unstable SS and SW, respectively. 
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FIGURE 11.  Nusselt number as a function of R for S = 3000, from direct numerical simulation 
of the governing PDEs. This branch of TW is the only branch of solutions we find. 

stable manifold. However, numerical errors in the initial condition and in the 
integrations introduce non-2,-symmetric perturbations that force the evolving 
solution away from the stable manifold of S,, and in our case apparently onto the 
stable manifold of the TW. In practice we find that the solution remains close to the 
unstable SS for sufficiently long times that we can accurately determine, for example, 
the Nusselt number of the SS.) The bifurcation diagram a t  S = 750 seems similar, but 
we have less detail. 

When S = 3000 we find only TW, for R up to 12000. It is not clear whether the 
branch of SS is unstable for all R or whether it stabilizes at some value of R > 12000. 
Figure 11 shows the plot of Nusselt number against R. 

6.4. Comparison between PDE integrations and results of Knobloch & Moore 
Knobloch & Moore (1990a, b )  treat the problem of binary fluid convection between 
stress-free boundaries of fixed temperature and concentration, with O(2) symmetry. 
Their governing PDEs are directly analogous to those governing two-dimensional 
Langmuir circulations, although their boundary conditions are not. For their 
system, like ours, there is a Takens-Bogdanov bifurcation that serves to organize the 
dynamics over a broad range of parameter values. The bifurcation to TW, however, 
is degenerate (d = 0 in (24)) and quintic terms must be included in the amplitude 
equations to  determine the bifurcation picture. Knobloch & Moore derive a set of 
nine (complex) coupled ODEs that captures the dynamics of the PDEs near the 
Takens-Bogdanov point exactly, and they compare numerical integrations of this 
‘minimal model ’ with the non-degenerate amplitude equations. (They assume that 
the analysis of (24) with d = 0 should be similar to  that with either small d > 0 or 
d < 0.) The resulting sequence of bifurcation diagrams for increasing S is remarkably 
similar to  our own for the LC problem, although they are able to investigate their 
ODEs in greater numerical detail than we can our PDEs. They observe the approach 
of the MW to a heteroclinic orbit connecting solutions of the SW and SS branches, 
and demonstrate that  the MW can exist only when the termination of the TW branch 
on the SS branch lies below the ‘knee’ of the SS branch. This observation is 
consistent with our results: for example, when S = 200 we find the TW +MW 
bifurcation, but when S = 300 we find no MW, and the TW terminates above the SS 
knee. 
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7. Conclusions 
In this paper, the first quantitative comparison between direct numerical 

simulations and weakly nonlinear theory for 0(2)  symmetric bifurcation problems is 
made. Many of the results were originally obtained by the weakly nonlinear analysis, 
and were observed to be inconsistent with the numerical results of LLM. This led us 
to a complete re-examination of the numerical results of LLM by an entirely different 
algorithm. Although the origin of the systematic numerical errors in LLM has yet to 
be identified, the excellent agreement of theory and numerical simulation found here 
give us the confidence to conclude that the present results are correct, while those of 
LLM are incorrect. 

The mathematical analogy that exists (for h = 0, or constant Stokes drift gradient) 
between the two-dimesional Langmuir circulation problem and thermohaline 
problems was the source of a surprising conclusion of LLM. A natural boundary 
condition in the Langmuir circulation problem corresponds in the thermohaline 
analogy to the imposition of constant-heat-flux boundary conditions, which differs 
from the best-studied thermohaline problem which imposes isothermal boundary 
conditions. This seems a rather innocent alternative, yet LLM found that the 
dynamics and the bifurcation sequences in the two cases were qualitatively different. 
This conclusion is now seen to be incorrect. The current paper demonstrates that 
qualitatively the problems are not much different, at least for the parameter regime 
explored here. 

Weakly nonlinear analysis turns out to provide very accurate quantitative 
solutions when the departure from criticality is small (RIB, - 1 = 0(10-2)), but the 
correct qualitative behaviour is predicted over a much larger region. In  this problem 
with periodic boundary conditions imposed, the modestly supercritical stable states 
are either travelling waves, modulated travelling waves, or steady states. Modulated 
travelling waves are ‘fragile ’, in the sense that they are predicted to exist, and found 
in simulations to exist, in very small regions in parameter space. The ‘robust ’ stable 
states are TW and SS. Weakly nonlinear theory valid to cubic order does not capture 
the stable SS when S > S*. It therefore fails qualitatively to predict the system 
behaviour for those portions of the (S, R)-plane for S > S* for which the SS is the 
only stable motion. As S increases, the transition from an oscillatory to a steady state 
is deferred to larger values of R/R, - 1 - for example, at S = 3000, the transition was 
not observed to occur for RIR, as high as 4, and so the qualitative value of the weakly 
nonlinear prediction improves as S increases. The physical origin of this seems clear. 
Once the convective activity is sufficiently strong to effect substantial overturning 
and mixing, the effects of stratification are erased and the system behaves like a 
homogeneous fluid. No stable restoring force then exists and the anticipated 
convective motion is a steady state. As the stabilizing stratification (level of S) is 
increased, the vigour of convection (level of R)  required to homogenize the water 
column increases. 

The present results are limited to constant Stokes drift gradient. Exponential 
variations of Stokes drift are also treated here by weakly nonlinear theory. No 
qualitative changes in the bifurcation picture emerge as a result of this extension, for 
the range of exponential decay constants examined. 

The prevalence of steady states or travelling waves is consistent with observations 
of Langmuir circulations, which show persistent windrows which sometimes drift at 
right angles to the wind direction. Preliminary computations with a three- 
dimensional code, which we hope to present in due course, show that rolls parallel to 
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the wind are the most unstable disturbance mode for unstratified water. Stable 
stratification, however, causes the most unstable (linear) modes to rotate from the 
wind direction. This effect does not seem to be a strong one, however, so the 
assumption of two-dimensional motion, made here, remains reasonable. 

This work was supported by NSF OCE-9017882, NSF AM-88-14553, and AFOSR- 
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S. L. and I. M. M. This research was conducted using the computational resources of 
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Appendix A. Corrections to LLM 
I n  this Appendix we summarize the errors in LLM: in the first section for the 

integrations under periodic lateral boundary conditions, and in the second section 
under flux-free boundary conditions. The present results supersede those of LLM. 

A. 1. Periodic boundary conditions 
Under periodic boundary conditions, and for L = 2, the Nusselt numbers computed 
by LLM are consistently substantially overestimated. For example, for the 
unstratified case S = 0 we calculate that  Nu-  1 = 0.1928 when R = 463.8, while it is 
1.2 from figure 3 (a)  of LLM. At R = 480 our simulations yield Nu-  1 = 0.6388, while 
the measured value from LLM is 2.8. The corresponding values to be contrasted at 
R = 520 are 1.2518 and 5.2 respectively. It is no longer true that the ‘only time- 
dependent asymptotic states found are single-frequency periodic motions arising 
from the Hopf bifurcation’ (LLM), for our integrations reveal the existence of two- 
frequency modulated waves, albeit over a very small range of parameters. 

The slanted sidewalls shown for the SS for large S are a product of the numerical 
errors: we find that the SS always have vertical cell walls (both in plots of stream 
function and of vorticity). 

The bifurcation picture that LLM find is considerably more complicated than we 
predict from our weakly nonlinear analysis and confirm with our direct numerical 
simulations. I n  particular, LLM report subcritical TW, co-existing stable SW and 
TW, and two distinct families of TW, which they call TW1 and TW2. The former 
family has solutions whose cell centres (that is, whose maxima and minima of the 
stream function) are offset from the horizontal midplane, while the latter has 
unstaggered cell centres. We find none of these phenomena : the Hopf bifurcation 
always gives supercritical TW and SW, with the former stable and the latter 
unstable. Accordingly, we never observe co-existing stable TW and SW, and we find 
only one family of TW, which always has staggered cell centres. 

A.2. Flux-free boundary conditions 
The results presented in LLM for flux-free boundary conditions overestimate the 
Nusselt number for all cases that have been compared. 

For S > SD z 72.01, we find the first bifurcation of the basic state to be a Hopf 
bifurcation, giving an SW whose period increases with increasing R. This SW is 
destroyed in a global bifurcation where it becomes heteroclinic to a steady solution. 
This bifurcation occurs when R = Rhet(S), say, and is indicated by the period of the 
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FTGURE 12. Stability diagram for L = 4. M indicates transition to monotonic convection, H a Hopf 
bifurcation to oscillatory convection. 1 indicates a bifurcation of the mode with wavenumber 
in, 2 the mode with wavenumber R. The intersections of the monotonic and oscillatory bifurcation 
curves, the double-zero bifurcations, are indicated by DZ. The simultaneous Hopf bifurcation of 
$t and R modes is indicated by HH. 

SW becoming infinite. The values of Rhet given in LLM are incorrect : for example at  
S = 350 we find SW solutions at R = 1080 and at  R = 1160, whereas LLM report 
Rhet = 1136. At R = 2100 we observe a steady state. In contrast to LLM’s results 
for S = 350 (their figure 5), the steady states we compute for periodic and con- 
strained cases are the same. 

If we take L = 4, so that the fundamental wavenumber is k = in, the bifurcation 
diagram is as shown in figure 12. In particular there is a simultaneous Hopf 
bifurcation of the fundamental and is first harmonic (k = x )  at (SHH, RHH) z (1078.9, 
1613.3). We have carried out simulations close to this double-Hopf point, at  
S = 1089 (so that S-SHH x 10); these are reported by Cox et al. (1992). We 
summarize the results here, and compare them with the simulations of LLM. There, 
as R is increased the first mode to become unstable is the k = x mode, and weakly 
nonlinear theory predicts stable SW, which are indeed observed in numerical 
simulations of the partial differential equations. Then the weakly nonlinear theory 
predicts a thin wedge of parameters in which a mixed-mode two-frequency state is 
stable, composed of modes with wavenumbers k = i x  and k = x .  This mixed mode is 
found in the numerical simulations, although this is a difficult search because the 
mixed mode a t  this finite distance from the double-Hopf point exists in a 
significantly smaller region of parameter space than would be projected based upon 
weakly nonlinear theory. For larger R, a pure k = i x  SW is predicted and observed, 
and finally at  still larger R a k = +x SS is computed. These results are in contrast to 
those of LLM, who describe integrations somewhat further from the double-Hopf 
point, at S = 1200. As they increase R, they first find stable SW with k = x, then a 
frequency-locked periodic solution involving both k = i x  and k = x modes, then a 
quasi-periodic state analogous to our mixed modes, then a SW with k = in, and 
finally an SS with k = in. Thus their picture seems similar to ours, but their states 
are all reported to occur between the Hopf bifurcation lines of the k = i x  and k = x 
modes in parameter space, whereas in fact our weakly nonlinear analysis and our 
numerical computations show, for example, that the two-frequency motions occur 
above both Hopf bifurcation lines. 

We describe now our computations done a t  S = 3000 for a box with L = 4. (Here 
LLM found quasi-periodic, frequency-locked, and intermittently chaotic motions 
between R = 3540 and 3640, with these solution types appearing on one or the other 
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of two co-existing branches of solutions.) For S = 3000 the Hopf bifurcations to SW 
with wavenumbers k=7I: ,  $71: (called SW, and SW,,,) occur a t  R =3191.4 and 
R = 3827.4 respectively, with frequencies w, = 19.80 and w,,, = 4.88. Our simulations 
were done by gradually increasing R with initial conditions that were a combination 
of n and in trigonometric modes. At R = 3200, we find only a x mode with w = 19.94 
and (Nu- l)max,min = 0.0244, -0.001. We compute this branch a t  R = 3540, 3630, 
3815, 3835, 3900, 4100 and 4150. (We have been careful to  investigate the stability 
of this branch to  small disturbances with wavenumber $IT, and it appears to be 
stable.) The angular frequency w decreases slowly with increasing R, and at  
R = 4150, w = 14.96. The SW, branch is stable at R = 4150 but has become unstable 
to perturbations with wavenumber i71: a t  R = 4200, giving rise to a second branch of 
solutions, with fundamental wavenumber in. This second branch can be traced to 
R = 3900, 3835, 3815, 3700 and 3650. I ts  frequency is w = 1.54 at R = 4200, which 
decreases to w = 1.17 a t  R = 3650. This $71: state has significant contributions from x 
and its harmonics. A run started a t  R = 3900 with only t x  trigonometric disturbances 
develops into a SW,,, state with negligible x contributions and with w = 4.22, but 
which slowly becomes unstable to  the aforementioned i x  state (with w = 1.46). As R 
increases, the contribution of 71: and its harmonics to this mode decreases. At 
R = 4200, Nu - 1 for the SW varies in the small range between 3.05 and 3.10 over the 
cycle. At R = 4250 we find only a i x  SS with Nu- 1 = 3.17. Thus the $x and x states 
coexist between R = 3650 and R = 4150. 

Appendix B. Simulation code 
We follow the spectral approach of Moin & Kim (1980), originally developed for 

channel flows. This has been implemented and tested for both laminar and turbulent 
channel flow problems by Guang Yang (private communication), and our code is a 
modification of his version of the Moin & Kim code. The contributions due to the 
vortex force and the nonlinear terms in the momentum and energy equations are 
advanced in time by a second-order Adams-Bashforth method, pressure terms are 
advanced by a fully implicit scheme and viscous terms by a Crank-Nicholson 
method. The rotational (Lamb’s) form of the momentum equations is used. Flow 
quantities are expressed in truncated Fourier-Chebyshev series, nonlinear terms are 
calculated pseudospectrally, and boundary conditions are enforced by the Lanczos 
tau method. To reduce the aliasing errors, we use the truncation strategy explained 
in Gilbert & Kleiser (1986). 

Our modification to Yang’s code adds an energy equation with Boussinesq 
approximation to the system of equations, and includes the ‘vortex force’ due to  
wave-current interaction in the momentum equations. Very general boundary 
conditions on top and bottom boundaries are also implemented, permitting the 
flexibility to simulate a variety of possible physical problems. Sidewalls can be 
chosen to be periodic or flux-free. In the latter case, 8, u and ware expanded in cosine 
series in the cross-stream direction (y), and v is expanded in a sine series. This forces 
the flux-free conditions. 

I n  channel flow simulations done by Moin & Kim (1980) and Kim, Moin & Moser 
(1987), even and odd modes in the spectral space decouple. With the more general 
boundary conditions in our problem this is no longer so. As a consequence, the 
bandwidth of the matrix corresponding to each velocity for zero modes and normal 
vorticity and vertical velocity for non-zero modes is doubled. This necessitates a 
change in the way coefficients are computed and stored for each wavenumber pair in 



Nonlinear dynamics in Langmuir circulations 697 

Nu 

RIR, PDE code Moore & Weiss 

6.0 3.58 3.58 
10.0 4.35 4.38 
15.0 5.07 5.06 

TABLE 7 .  Comparison with Rayleigh-BBnard simulations of Moore & Weiss (1973), where their 
Prandtl number is Pr = 1. Here R, is the critical value of the Rayleigh number for the onset of 
convection. 

the homogeneous directions. Two possible options are specially tailored Gauss 
elimination (Canuto et al. 1987) or U-L factorization without pivoting (cf. Dennis & 
Quartapelle 1985). We instead employ a third alternative - an efficient blocking with 
computation time and storage comparable to the decoupled case. Optional pivoting 
may be used as well, though pivoting was found to be unnecessary in this case. 

B.l. Checks 
The modified spectral code has been subjected to various checks. First, we compare 
our results for the finite-amplitude, fully nonlinear Rayleigh-Be'nard problem with 
those of Moore & Weiss (1973). There are two different ways to simulate this problem 
by distinct restrictions of our code, thereby enabling tests of two different parts of 
it. For example, the streamwise component of velocity may be identified with the 
negative perturbation temperature, - 8, in the Rayleigh-Be'nard problem. The x- 
direction of this problem is identified with the cross-stream -y of LC. The 
destabilizing Rayleigh number R is Ra, the usual Rayleigh number in thermal 
convection, the Prandtl number is fixed at 1, and S is set to zero, obviating the need 
to deal with the energy equation. The boundary conditions on u in LC are thus no- 
slip and on w are stress-free conditions. The results agree well with Moore & Weiss 
(1973) at various values of Ra, as shown in table 7. This is a good check on a modified 
momentum equations and boundary conditions. 

As a check on the energy equation, we can simulate the Rayleigh-Be'nard problem 
alternatively by including the energy equation. To do this, we set R = 0 ,  thereby 
removing the vortex force, and identify S to be -Ra, making it the destabilizing 
agent. The boundary conditions on u and w of LC are stress-free and 8 is held fixed 
at top and bottom boundaries. Thus the LC problem reduces identically to the 
Rayleigh-BBnard problem. This check also shows excellent agreement with results of 
Moore & Weiss (1973). 

As reported in $6, and by Cox et al. (1992), the results of the numerical simulations 
agree well with the weakly nonlinear analysis of this problem for periodic and flux- 
free lateral boundary conditions on the sidewalls for stress-free boundary conditions 
on the top and bottom of the layer. 

Inspection of one-dimensional energy spectra in both the z- and y-directions 
provides a measure of the adequacy of the spatial resolution. With proper spatial 
resolution, the spectra should display exponential decay at the larger wavenumbers. 
The spatial resolution was found to be adequate with 16 Fourier modes in y and 17 
Chebyshev modes in z,  which is the resolution used in the calculations discussed in 
the paper. The Courant number for most runs was about 0.05 and was always less 
than 0.25. Computations were repeated with varied timestep sizes and spatial 
resolutions. Examples of spatial and temporal accuracy appear in table 8 and table 9 
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Resolution Ah- 1 

8 x  17 4.0419 
16x17 3.9619 
32x17 3.9617 

TABLE 8. Effect of spatial resolution on the Busselt number, for the SS at S = 350, R = 2100. The 
first figure in the Resolution column indicates the number of Fourier modes taken in the y- 
direction, and the second indicates the number of Chebyshev modes in z. 

At W 

0.00050 5.815 f 0.003 
0.00125 5.82f0.01 
0.002 50 5.82 f 0.02 

TABLE 9. Effect of different timesteps, At, on the frequency, w ,  of the SW at S = 350, R = 987 

respectively. For table 9 the frequency is computed by measuring the time elapsed 
between successive peaks of velocities sampled a t  various time intervals. This 
introduces an error corresponding to  the sampling interval in time. The error bars 
refer to  this source of error in the determination of the time period. 

Appendix C. Algorithms for weakly nonlinear analysis 
C.l. Method of solution for non-degenerate operator L 

The governing equations for two-dimensional Langmuir circulations (with constant 
Stokes-drift gradient) are precisely those of double-diffusive convection : for ideal 
double diffusion, the weakly nonlinear analysis can be done exactly by hand, in 
particular the conditions of marginal stability are known exactly, as are the 
coefficients in the amplitude equations. For the LC problem this is not the case, 
because the boundary conditions are not as convenient as for IDD. To solve the 
linear stability problem for LC, and to carry out the weakly nonlinear calculations, 
we resort to  numerical means. The z-structure of 21., u and B is expressed as an infinite 
sum of Chebyshev polynomials, which is truncated at  some finite order for the 
numerical calculations. The boundary conditions were implemented by the tau 
method. 

Thus any function !P(z) is represented in our finite Chebyshev truncation by a 
vector of coefficients. For example, if 

N N N 

21.M = z $i Z-l(Z), 4 2 )  = c Ui z-1m q.4 = x Bi Z-I(Z), (C 1)  

where Z = 2z- t  1 ,  and T,(Z) is the i th Chebyshev polynomial, then Y(z) is 
represented in the numerical program by the vector of coefficients 

i-1 i=1 i-1 

= ($1 9 . . . > $NI u1) . . . , U N  7 81, * * * > O N ) *  

The operator a/aZ is represented by an N x N matrix, D, which, then applied to the 
vector of coefficients for $ ( z ) ,  say, returns the vector of coefficients for a+/aZ (=  
@@/az). Similarly the operation of multiplication by h(z) is represented by a matrix 
H which acts on a coefficient vector for u(z) and returns a coefficient vector for 
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h(z) u(z). In setting up H, we use (and truncate) the following identity (Abramowitz 
& Stcgun 1965, p. 376), which expresses an exponential in terms of Chebyshev 
polynomials, 

(C 2) 
00 

eaz = lo@) +2  C Ik(a) T,(Z), 
k-1 

where Ik is the modified Bessel function of order k. 

that the linear eigenvalue problem to be solved for the growth rate (T is 
Ignoring for the moment the boundary conditions on z = 0, - 1(Z = & l),  we see 

{crJ(k)+ Ko(k)} 9 = 0 ,  (C 3) 

where J ( k )  and Ko(k) are now 3Nx 3N matrices which represent the differential 
operators J and KO of $2.2, with aY replaced by ik. Thus 

(4D2-k21) 0 0 
J ( k )  = 

- (4D2- k21)2 -ikRH ikSl 
- ikl - (4D2 - k21) 0 
- ikl 0 -7(4D2 - k21) 

KO@) = and 

where I is the N x N identity matrix. 
So far, from (C 3) the governing equation L(k) Y = 0 for the eigenvector Y is 

satisfied. Now we must apply the boundary coFditions, using the tau method. There 
are four boundary conditions to be applied on $, and rows N - 3  to N of J ( k )  and Ko(k) 
are replaced by coefficients. that encode these conditions. For example, with stress- 
free boundaries we want $ = $zz = 0 at Z = f 1. These boundary conditions give 
four independent linear equations to be satisfied by the coefficients {$j}gl. These are 

$ l + $ 2 + . . . + $ N = 0  ( $ = O o n Z =  l),  (C 6) 

(C 7 )  

(C 8) 

4$-,-24$-,+. . .-(-1)NCN=0 ($zz = O o n Z = - l ) ,  (C 9 )  

. .-( - l ) N $ N  = 0 ($ = 0 on 2 = - l ) ,  

4$, + 24$, + . . . + C, = 0 ( $zz = 0 on Z = 1 ), 

where C, = +(N- 1)2 ( (N-  1)2- 1).  
To accommodate these conditions we replace rows N -  3 to N of Ko(k) by the block 

1 1 1 ... 1 

1 - 1  1 ... 
0 0 4 ... 
0 0 4 ... - ( - 1 ) , C N  

The same rows of J are replaced by a 4 x ,3N matrix of zeros. 
We apply a similar procedure for Zi and 0,  but replacing just two rows in each case 

because there are two boundary conditions to be applied on each variable. 
Let us now return to the eigenvalue problem (C 3 ) .  It is equivalent to 

J-'(k) Ko(k) Y = -(TY, (C 11) 

so that -cr is an eigenvalue of the matrix J-'(k) Ko(L). We have rewritten the 
generalized eigenvalue problem (C 3) as the standard eigenvalue problem (C 11). This 

29 FLM 241 
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is immediate if J(k) is invertible, but here J ( k )  is not because it has eight zero rows. 
Nevertheless, the size of J(k), K,(k) and Y can be reduced so that the reduced matrix, 
which we call J,, i s  invertible and then (C 11) makes sense. (The subscript s indicates 
that J, has smallcr dimensions than J(k).) The procedure is most easily explained 
when there is a single independent variable, $, say, rather than three, as in the LC 
problem. The generalization to three independent variables is conceptually 
straightforward, although the bookkeeping may require care. 

Suppose that the eigenvalue problem for the single variable ll/(z) is 

(crJ+K)y = 0, (C 12) 

where y = ($,, @,,. . . , ll/,) is the vector of Chebyshev coefficients representing an 
approximation to  $ ( z ) ,  and that J and K are N x  N matrices whose bottom M rows 
encode M boundary conditions on @. We partition J, K and y as follows: 

Here J, and J, have N - M  rows, and J, and J, have M rows. J, and J, have N - M  
columns, and J, and J, have M columns. (Similarly for K.) v, has N - M  rows, and y, 
has M rows. 

The M boundary conditions are expressed by the last M rows of the matrix 
equation (C 12), and these are 

K,Vl+K,W, =-4J,v,+J,v,) = o ,  (C 14) 

(C 15) 

where the last equality holds because J, = J, = 0. Therefore 

W ,  = - K;' K, rl. 
(K, is invertible provided the boundary conditions are independent, and provided 
they do not involve derivatives of $(z )  of higher order than ( N -  1) - this last point 
because of the finite Chebyshev truncation.) 

The governing equation for $ ( z )  is described by the first N - M  rows of (C 12), 
which are 

K,v/,+K,vz = -~ (J l?4+J2vz~~  (C 16) 

and using (C 15) to substitute for y,  in terms of vl, these become 

(K, - K, K,' K,) v, = - u(Jl - J, K;' K,) vl. 
In  general the (N-M)-square matrices K, = K, - K, K;' K, and J, = J,- J, K;' K, 
have full rank. Thus we have the standard eigenvalue problem 

Jgl K, ~ l =  - ~ 1 ,  (C 17) 

which can readily be solved in a computer algebra package such as Mathematica. A 
by-product of the solution is the following decomposition, 

J,' K, = VTA(VT)-', (C 18) 

where A = diag [ -cT,, . . . , -uNPM],  -A  is the diagonal matrix of eigenvalues of 
(C 12)) and V is a matrix whose rows are the corresponding eigenvectors. 

The reduction to be applied to  the matrices J and K that arise in the LC problem 
is slightly more complicated. Each of the vectors representing the Chebyshev 
coefficients of the three variables is split into two parts, and each of the nine blocks 
that comprise J and K is split into four sub-blocks. This requires careful bookkeeping. 
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Most of the calculations involved in the weakly nonlinear analysis are carried out on 
the reduced vectors analogous to yl since the extra elements analogous to y,  can be 
inferred from equations like (C 15). The exception is in the calculation of the 
Jacobian, where we use the full vectors to calculate the nonlinear interactions in 
spectral space. In what follows we drop the subscript s on the reduced matrices, for 
clarity of notation. 

A t  O(e2), equations like 

{n, iwJ(n, k) + K,(n, k)} F ! 1 . n 2 )  = R(nl*n*), 2 (C 19) 

must be solved, where RF1vn,) denotes the quadratic nonlinear terms from N( Yl, Yl) 
which are proportional to eneiky+nliwt. The matrices L(nl, n,) = n1 iwJ(n, k) + K,(n, k) 
can easily be calculated, and then inverted to give Y'$$I*~P)  = L-l(n,, n,) RP1.n2). 

There is a subtlety in the calculation of F!$O) when flux-free boundary conditions 
are applied. The matrix L(0,O) is singular because the boundary conditions uz = 0 at 
2 = & 1 allow an arbitrary multiple of the complementary function 

($, f k 4  = (0,1(Z), 0) 

to be added to F!*O). More pre$isely, if Y$o*O) = (&,$, 8) solves L(0,O) yCz0.O) = R(Os0) 2 9  

then so does !&!v0) = ( ~ ,  G + a, 0)  for any constant a. In terms of the matrix L(0,O) the 
ambiguity arises as follows. 

L(0,O) is composed of three blocks that sit on its leading diagonal, L(0,O) = diag 
[L,, L,, L3]. The first column of L, is zero because (i) the equations depend only on uzz 
but not on uz or u, so the first two columns of the equation rows vanish, and (ii) the 
stress-free boundary conditions depend only on uz so the first column of the 
boundary condition rows vanishes. Therefore L, is a singular matrix, and its top 
row is a linear combination of its other rows. We replace the top row by the row 
[l, O , O ,  . . . ,O], which fixes the vector of Chebyshev coefficients ui to have zero as a 
first element. This procedure makes no difference to the calculations at  any order 
because only derivatives of u with respect to y, Z or t occur in the governing 
equations and in the boundary conditions. Choosing a different first element is 
equivalent to making a Galilean transformation. 

Once the terms of O(e2) are calculated then attention turns to the third-order 
problem, and the calculation of the amplitude equation(s). The resonant nonlinear 
terms are selected -these are the terms proportional to eiky+iwt with the z-structure 
of the marginal eigenfunction. The equation to be satisfied by the cubic term 
proportional to eiky+iwt is 

{iwJ(k)+ K,(k)} F;v1) = Ril-l). (C 20) 

But we know that J-'K, = VTA(VT)-l, so 

{iwl +vT~(vT)-l} Jycl,l) = J-lR(L1) 

{iwl +A} (VT)-l Ft.1) = (VT)-1 J-lR(191). 3 

3 3 3  

and therefore 

Since iw is one of the eigenvalues already found numerically then some diagonal 
element of iwl + A  is zero, the mth element, say. (Mathematicu does not necessarily 
sort the eigenvalues in the order of their real parts.) Therefore the corresponding 
mth element of (VT)--I J-'Rr*') must vanish also. If we are considering a steady 
bifurcation then w = 0, and since Rkl-') includes terms like A ,  A1-41, and dA/dT, then 
we arrive at the evolution for A by insisting that a given element of (VT)-l J-lRkl.') 
should vanish. If we are considering a Hopf bifurcation then w + 0, and there are two 

23-2 
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N R H H  SHH 

10 1613.5596 1079.0931 
12 1613.3038 1078.8753 
14 1613.3066 1078.8779 
16 1613.3066 1078.8779 

TABLE 10. (RHH,SHH)  is the computed location of the multiple Hopf bifurcation involving the 
k = in aqd k = K modes, when L = 4 and h = 0. The number of Chebyshev polynomials used for 
each of $. .Ci and 0 is 3. 

amplitudes; A,  of the left-TW, and A ,  of the right-TW. In this case Rilql) includes 
terms like A, ,  A,IA,[*, A,1A,)2 and dA,/dT, and we obtain an evolution equation for 
A,. The evolution equation for A, is just the complex conjugate of the evolution 
equation for A,? with (A , ,A , )  - (A,,Al). 

This derivation of the amplitude equation(s) by algebraic manipulation of (C 20) 
is mathematically equivalent to requiring that thc inner product of (C 20) with 
the adjoint eigenfunction P be satisfied. For Y"{ioJ + KO} = 0 implies that 
!PJ{iol+VTA(VT)-l} = 0 ,  and so !PJVT{iwl+A} = 0. But the mth column of 
iwl + A  is zero, because urn = -iw, and so P J V T  = Em, where Em is the row vector 
whose mth element is one and whose other elements are zero. Therefore, !P = 
E,(VT)-' J-l, and Y" is the mth row of (VT)-l J-l.  So the mth row of (VT)-l J-lR('vl) 3 

equals the inner product of Rilvl) and Y". 
We have checked that the matrix method for determining the solvability condition 

gives results in agreement with the direct computation of the adjoint solution, and 
the explicit evaluation of the inner products in (18). The numerical values of the 
coefficients in the amplitude equations computed by the two different methods agree 
to within a small numerical tolerance. (For the cases we have computed the 
agreement is to  five or six significant figures.) 

C.2. Method of solution for degenerate operator L 
If the linear operator L has a degenerate eigenspace then we cannot use the 
decomposition of the previous section to compute the solvability condition. Instead 
we use the singular value decomposition. I n  practice the difference is that  the 
singular value decomposition yields 

J-'(k) K, (k )  = UTAV, (C 21) 
where A is the diagonal matrix of singular values, and for the case we are considering 
the last element of A is zero (or a t  least to within numerical tolerance). The computer 
algebra calculations mirror the operator calculations described in Q 3.3. 

C.3. Accuracy of Jinite Chebyshev truncation 
For ideal double diffusion the z-structure of each term in the expansion of Y can be 
described exactly by a sine or cosine. For LC the z-structure is more complicated - 
the finite truncation of Chebyshev polynomials leads to  a truncation error. This error 
is particularly important for large values of A,  where the Stokes-drift gradient, 
h(z) = e2Az, is non-zero in a thin boundary layer near z = 0, and approximately zero 
elsewhere. Table 10 shows as an example the convergence of the computed values of 
(RHH, SHH) (the point where L has two pairs of imaginary eigenvalues, one pair each 
for the modes with k = $IT and IT, yhen the dpmain has length L = 4) as N ,  the number 
of polynomials used for each of $, Zi and 8, is increased. In this case h = 0. 
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Weakly nonlinear analysis Huppert & Moore (1976) 

( a )  0.005982(1+ 1.1842sin2p0t) 0.005984(1+ 1.1842sin2pOt) 
( b )  0.009312( 1 +0.1676 sin2p0t) 0.009310(1+0.1676 sin2p,t) 

TABLE 11. Comparison with analysis by Huppert &,Moore (1976). All symbols are in their notation 
for an ideal double diffusion problem with a = 2-1, (T = 1. For case (a) R ,  = 100, 7 = 1/6.7 and 
computed R, = 925.8933, p ,  = 3.0490.5 by both methods. For case (b), R ,  = 5000, 7 = 0.1 and 
computed R ,  = 3545.56, p ,  = 27.3463 by both methods. 

We have used N = 10 for preliminary investigations to decide, for example, 
whether a particular coefficient is positive or negative. For the calculation of definite 
values of the coefficients we have generally used N = 14. 

C.4. Checks on the weakly nonlinear computations 

The coefficients we calculate have been checked in several ways. First, they have 
been checked against the analytical linear and weakly nonlinear results given by 
Huppert & Moore (1976) for ideal double diffusion. They consider a Hopf bifurcation 
with flux-free boundary conditions, so the solution is forced to be a SW. Thus it is 
possible to check a and /3 only in combinations a,+@, and ai +/Ii. These agree well; 
the Nusselt numbers calculated by the weakly nonlinear analysis is compared in 
table 11 with that constructed from equations (4.5) and (4.7) of the Huppert & Moore 
paper. 

Secondly, we have extended the perturbation analysis done by Huppert 6 Moore 
to include periodic boundary conditions. The weakly nonlinear analysis in this case 
can again be done analytically, and incorporates O ( 2 )  symmetry, thereby including 
both standing and travelling waves. We find that all details of the analytical and 
numerical computations to the same level of accuracy found in table 11. This is a 
strong check on both the structure of the computer algebra code, and on its details. 
Thirdly, independent numerical calculations of the coefficients have been made by 
Tom Allen (private communication), using a different program, and he has notified 
us that his results agree with ours. 
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